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INSTRUCTIONS 
 
This examination is three hours in length. No aids or calculators are allowed.  
 
There are three sections to this examination. Sections 1, 2 and 3 are worth 
approximately 14, 10 and 6 points respectively. Do not spend too much time on a 
section: try to follow the suggested time allocation. 
 
Please answer all questions in the space provided. If you need more room, 
continue your answer on the back of the previous page.  
 
Justify all your answers and keep in mind that markers always appreciate the 
clarity and concision. 
 
Good luck! 
 
 
 
Please note: Proctors are unable to respond to any queries about the 
interpretation of the exam questions. Do your best to answer exam questions as 
written. 
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Section 1: Parental care, a conflict between the sexes 
 
 
(Suggested time: 1 hr 20 min) 
 
 
 
Bi-parenthood is rare in nature (humans are one of the rare examples). In most 
species, there is no parental care at all. The offspring can sometimes be raised 
by females alone and (more rarely) by males alone (in seahorses for instance).  
 
Which sex should take care of the offspring? Trivers (1974) argues that females 
should: first because they invested a lot of energy to make an egg and second 
because they are sure of the offspring is from them. Dawkins (1976) argues that 
the parent who releases its gametes first should leave first. Following Maynard-
Smith (1982), we will use a game theory approach to try to answer this question. 
 
 
Consider a species where each female lays V eggs if she deserts and v eggs if 
she stays (V > v). She thus compensates the lack of parental care by increasing 
the number of eggs. All females are identical and only mate once per season. A 
male can mate again R times if he deserts and r if he stays (r < R). A male 
always keep the same behaviour and always mates with the same type of 
females. Without any parental care, the probability the egg will survive is g0. If 
only one parent invests in parental care, this probability becomes g1. Finally, with 
bi-parental care, the probability is g2. Of course, g0 < g1 < g2. 
 
We assume this game is a one-shot game between two players (i.e. the players 
cannot change strategies). The fitness of a bird is assumed to be proportional to 
the number of youngs. 
 

1.1 Find the payoff matrix for this game between males and females and 
justify the use of a normal form game. 

 
1.2 Find all pure strategy Nash equilibria and specify under which parameter 

values they are valid. 
 

1.3 Give a brief biological interpretation for each of these Nash equilibria (no 
more than one sentence for each case). 

 
From now on and until the end of the section, we make some simplifying 
assumptions. First, we assume that a male cannot reproduce again during the 
same season if he stays and he may only reproduce once more if he deserts. 
Second, a female lays three times more eggs when she deserts than when she 
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stays. Finally, an egg can only develop if at least one of the parents invests in 
parental care. 
 
 

1.4 Write down the new payoff matrix. At which condition on g1 and g2 is there 
a completely mixed strategy Nash equilibrium? Write this Nash 
equilibrium. 

 
We denote p the proportion of males investing in parental care and q the 
proportion of females investing in parental care. From now on and until the end of 
the exercise, we assume that g2 is equal to 1 and that g1 is 0.75. Also, we 
assume that v is equal to 4. 
 

1.5 Find the replicator dynamic equations for this game (factorising the 
expressions will help). 

 
1.6 Find all the fixed points. 

 
1.7 Write the Jacobian of the dynamical system. 

 
1.8 Find the nature of each of the fixed points. 

 
1.9 Draw a phase diagram of the dynamical system. Be sure to indicate the 

fixed points, the isoclines, a vector indicating the direction of change in 
each region of the diagram and one or more trajectories illustrating the 
nature of the fixed points. 

 
1.10 Based on the replicator dynamics, what conclusions can you draw 

concerning the game? 
 
1.11 Could the results of this game be applied to humans? Why? Why not? 
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Section 2: Siderophore production in bacteria 
 
 
(Suggested time: 1 hr) 
 
 
 
One of the main constraints limiting bacteria growth in vivo (i.e. in real-life 
conditions) is the abundance of iron. In aerobic conditions (i.e. in presence of 
O2), iron exists in an insoluble form (Fe III) and many host species actively take 
away iron from infectious bacteria by using proteins with high affinity to iron. As a 
response, bacteria have elaborated several mechanisms to steal iron from their 
host. One of the mechanisms shared by several bacterial species is the 
production and uptake of siderophores. These compounds fix iron and make it 
soluble. The complex [siderophore+iron] can then be actively transported into the 
bacteria. Bacteria release siderophores in the host as a response to a lack of 
iron.  
 
One of the key aspects of siderophore production is that they may potentially 
benefit any bacteria in the neighbourhood.  
 
 
We first address this problem as a two-player game. We assume that a player is 
a bacterium and that mixed-strategies are not allowed. We also assume that the 
gain in fitness of a bacterium is the number of siderophores it gets. Sideophores 
are shared equally among all the players. 
 
We consider two genotypes: 

- co-operators (C): they pay a cost g to produce b siderophores 
- defectors (D): they don’t produce siderophores  

 
 

2.1 If there are only two bacteria in the population and if a co-operator plays a 
defector, what are their respective payoffs? 

 
2.2 Write the payoff matrix of this game. 

 
2.3 In which case can C be an evolutionary stable population state? 

 
2.4 Is it possible to observe an evolutionary stable population state with more 

than one genotype? 
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We now work with a colony of N bacteria (N large) each of which produces an 
amount xi (i ∈ [1,N]) of siderophores. We assume the cost paid by a bacterium is 
proportional to the amount of siderophores produced (bacteria i pays a xi). 
 
 

2.5 Find the total amount of siderophores produced by the colony. 
 

2.6 Assuming that siderophores are shared equally among the bacteria of the 
colony, find the payoff of a bacterium i. 

 
2.7 Which game does this biological situation corresponds to? 

 
2.8 Give the mathematical definition of a Nash equilibrium for this N-bacteria 

population where each individual i produces xi siderophores. 
 

2.9 Using questions 2.6 and 2.8, find the optimal genotype (i.e. the best 
strategy) when 1 < a N.  

 
2.10 Describe in words the effect of N on the optimal investment. 

 
2.11 What modifications of the model could you think of to explain high levels of 

cooperation (which are sometimes observed)? 
 
 
 
 
 
 
 
References 
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production in bacterial parasites, Proc. R. Soc. Lond. B , 270:37-44 
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Section 3: The pirate game 
 
 
(Suggested time: 40 min) 
 
 
 
For this section, a verbal reasoning is accepted (as long as it is logical) and 
diagrams are expected. 
 
 
‘Ten pirates have gotten their hands on a hoard of 100 gold pieces and wish to 
divide the loot. They are democratic pirates, in their own way, and it is their 
custom to make such divisions in the following manner: The fiercest pirate makes 
a proposal about the division, and everybody votes on it, including the proposer.  
 
If 50 percent or more are in favor, the proposal passes and is implemented 
forthwith. Otherwise the proposer is thrown overboard, and the procedure is 
repeated with the next fiercest pirate. All the pirates enjoy throwing one of their 
fellows overboard, but if given a choice they prefer cold, hard cash. They  
dislike being thrown overboard themselves. All pirates are rational and know that 
the other pirates are also rational.  
 
Moreover, no two pirates are equally fierce, so there is a precise pecking order—
and it is known to them all. The gold pieces are indivisible, and arrangements to 
share pieces are not permitted, because no pirate trusts his fellows to stick to 
such an arrangement. It’s every man for himself. What proposal should the 
fiercest pirate make to get the most gold? For convenience, number the pirates in 
order of meekness, so that the least fierce is number 1, the next least fierce 
number 2 and so on. The fiercest pirate thus gets the biggest number, and 
proposals proceed in reverse order from the top down. […]’ 
 
 
This game is difficult so before solving a 10-players game we will study simpler 
cases. 
 

3.1 Find what proposal the fiercest pirate should make to get the most gold in 
the case where there are only 2 pirates playing the game. 

 
3.2 Same question as question 3.1 but for a 3-pirate game. 

 
3.3 Same question as question 3.1 but for a 5-pirate game. 
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3.4 Same question as question 3.1 but for a 10-pirate game (you do not need 
to justify this answer). 

 
3.5 Bonus question: What happens if 204 pirates are playing the game? 

 
Do not spend time on this (very difficult) question unless you have done the 
whole exam. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Reference 
 
Ian Stewart (May 1999) A Puzzle for Pirates, Scientific American (p.98-99) 


